
-A176 1 ta AN IMPROVED PRIMAL SIMPLEX VARIANT FOR PURE PROCESSING 1/1
NETNORKS(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC
STUDIES M D CHANG ET AL OCT 86 CCS-552

UNCLASSIFIED N88814-82-K-0295 F/G 12/2 NU.IlIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEE

.2
11.2

1111III- L 11"

II

1111IL2M5

0 Research Report CGS 552

AN IMPROVED PRIMAL SIMPLEX
VARIANT FOR PUJRE PROCESSING NETWORKS

by

Michael 1). Chang*
Choui-H1ong .1 Chon**
Michael Engquist

CENTER FOR
CYBERNETIC

STUDIES
The University of Texas

Austin ,Texas 78712

DT IC
~JAN 2 2 1987

I'. . -N -S T ATWNffA %

Distz. utian Unii nitrod aS; I.

67 . 5

Research Report CCS 552

AN IMPROVED PRIMAL SIMPLEX
VARIANT FOR PURE PROCESSING NETWORKS

by

Michael D. Chang*
Chou-Ilong J. Chen**
Michael Engquist

October 1986 Accession For

NTIS GRA&I

DTIC TAB
Unannounced
Justification

-By.

Dstribution/
*North Dakota State University Availability Codes

**Gonzaga University A...ado:Aveil and/or-
Dist Special

This research was partly supported by ONR Contracts N00014-82-K-0295
and N00014-86-C-0398 with the Center for Cybernetic Studies, The
University of Texas at Austin. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Graduate School of Business 5.176E

The University of Texas at Austin
Austin, Texas 78712

(512) 471-1821

ABSTRACT

In processing networks, ordinary network constraints are supplemented

by proportional flow restrictions on arcs entering or leaving some

nodes. This paper describes a new primal partitioning algorithm for

solving pure processing networks using a working basis of variable

dimension. In testing against MPSX/370 on a class of randomly generated

problems, a FORTRAN implementation of this algorithm was found to be

an order of magnitude faster. Besides indicating the use of our methods

in stand alone fashion, the computational results also demonstrate

the desirability of using these methods as a high-level module in a

mathematical programming system.

J
Key Words

Networks,

Processing networks

Linear programming

Mathematical programming systems -

~~/

I. Introduction.

Pure processing networks are minimum cost flow problems in which

proportional flow restrictions are permitted on the arcs entering or

leaving a node. Applications are widespread with the proportional flow

restrictions governing such things as the size of loan payments in cash

flow models and the relat ion between raw materials and finished

products in assembly models A survey of applications is included in

the work of Koene [161. The proportional flow restrictions can be

modeled either as nonnetwork rows or as nonnetwork columns in a linear

programming (LP) formulation Our approach uses nonnetwork columns

since they lead to an LP basis with fewer rows. In [16], Koene shows

that any LP problem can be readily, transformed to a pure processing

network problem at the expense of enlarging the problem size. However,

the primal partitioning methods of this paper will only be more

efficient than standard LP methods when the basic nonnetwork columns

form a small fraction of all basic columns. The allowable size of this

fraction is vet to be determined

The success of primal simplex solution procedures for solving pure

networks is well known These procedures depend on special data

structures popularized by Glover and Klingman and their co-workers more

than a decade ago (7], [81. [131 A detailed description of network

methods is given by Bradley et al 12] Standard primal simplex LP

codes, however, use data structures for exploiting sparsity in the

basis matrix 1201,[221. As shown in [8], [91, [25], specialized net-

work codes have achieved an advantage in solution speed up to two

orders of magnitude over standard LP codes.

j i~*

-2-

Since LP problems often have a large network component, ways to

exploit this component based on specialized network methods have been

sought. This creates a need to reconcile the two data structure types

Two levels of detail for combining these data structures have been

used. Glover et al. [12] describe a high-level approach in which a

PL/I main program calls both a FORTRAN network code and MPSX'370 [14]

modules in a complex solution procedure for a large nonlinear mixed

integer program. McBride [1181 and Glover and Klingman 11011111

describe solution methods for embedded network problems in which basis

partitioning allows both network and sparse matrix data structures

which are tightly integrated in maintaining the basis. The specialized

FORTRAN code of [181 ran about five times faster than MINOS 1211 In

1II1. three large problems which in'luded both nonnetwork rows and

columns were solved using a FORTRAN embedded network code and MPSX/370.

The nonnetwork rows make these problems more difficult than the test

problems of the present paper. and MPSXi370 solved them about 4% faster

than the specialized code These efforts provide n start In delimitint!

the class of problems which benefit from tight integrat ion of the two

data structures

Tomlin and Welch [251 describe a mathemati(ral programming system

written in assembly language which contains two optimizers, one based

on network data structures and one based on sparse matrix data

structures. Some modifications of network methods were made in order

to accommodate the network optimizer into the system. This is a
lU

high-level approach since problems which are partly network do not

benefit from the specialized network data structures. However, the two

optimizers do have common I/O and start routines. For embedded network

m4i

-3-

problems with nonnetwork rows, a two stage starting procedure is

described in which the network portion of the problem is first solved

using the network optimizer. This solution is then used to provide a

partial basis for the regular LP optimizer. Presumably this approach

is superior to using only the regular LP optimizer and its start

routine, however, comparative solution times are not provided in [251

A similar approach was used in l11] where a FORTRAN network optimizer

solved Lagrangian relaxations of the original problem iteratively to

provide an initial partial basis for MPSX, 37U This start procedure

resulted in a total solution time which was 21 times smaller than that

achieved when the MPSX/370 ('RASH start procedure was used

Chen and Engquist [5] described a primal simplex variant which is

the precursor of the algorithm of this paper One feature of the

algorithm of [5] is that all nonnetwork columns are always basic. This

results in a working basis whose dimension is equal to the number of

nonnetwork columns. When a FORTRAN implementation of the previous

algorithm was tested against MINOS, it was found to be an order of

magnitude faster on problems with up to 2U0 nonnetwork columnus The

qu 'stion remained as to whether a s imilla improvement iin efficivi'icy

could be achieved against an assembly language code such as MPSX/370

In the present paper, we answer this question in the affirmative. We

describe improvements to both the algorithm and implementation of [5]

In particular, the working basis for the current method has a dimension

which varies with the number of basic nonnetwork columns. The approach

we use involves a fairly tight integration of network and sparse matrix

5 data structures. The design of our processing network code, PROCNET,

was influenced by Marsten [17] in that it consists of a library of

wL

-4-

subroutines which communicate through parameter lists. Like Marsten's

XMP code, PROCNET utilizes the LA05 subroutines of Reid [23], [24]. In

fact, our extension of the LA05 subroutines may be beneficial to XMP

users. This is discussed in Section 4. Although PROCNET is already

highly efficient, further speedup is no doubt possible through a

tighter integration of network and sparse matrix (LA05) data

structures It would also be of interest in future work to use PROCNET

as a module in a high-level approach. For example, in large embedded

network problems having both nonnetwork constraints and nonnetwork

variables, the nonnetwork constraints could be initially relaxed

PROCNET could then be used to solve the remaining problem and thus pro-

vide a partial starting basis for an LP optimizer.

2 Background on Processing Networks

The pure processing network problem (problem PPN) is.

minimize cNXN + CP XP (2 1)

subject to. ANXN + Ax, h (2 2)

0 < X N <1hN (2 3)

0 < Xp < lip (2 4)

The mxn matrix AN is the node arc incidence matrix for a pure net-

work N. while tie mxp matrix Ap contains the nonnetwork columns These

nonnetwork columns are also called processing columns. Vector b

* contains the supply values, while cN and Cp contain unit costs for the

vectors of decision variables xN and xp. The capacities are the

components of the simple upper bound vectors hN and hp. It is assumed,

without loss of generality, that a slack arc and artificial arcs with

N~

-5-

Big-M costs have been introduced into the network N so that it is

connected and the matrix AN has rank m. It is also assumed that each

row of [ANAp] contains at most one non-zero component from the columns

of Ap. The latter assumption is made to simplify the notation, and it

does not restrict the application of our methods. Each column of Ap is

of the form

Ov VVin row v

-avw(z) in row w(z), z=1,2,....t (2.5)

0 elsewhere.

Further, a, I l, 0 < x, 1vw 1" and

* t

I (z) = 1 (2.6)i,?Z=l V Z

must hold

Corresponding to each column of Ap is a column of AN called an alloca-

tioil (oltuul The following network diagram is associated with this

structure

N,..o

-6-

w(2i)

S

U VA

Figure 1, A Splitting Node

In Figure 1, the square is termed a splitting node, while the circles

are ordina'y network nodes Arc (u,v) is called an allocation arc and

its coluxni in AN is the allocation colunu The arcs leaving the square

node in Figure I are termed processing arcs, and they are represented

by a column of the form (2 5) Node v and nodes w(l), ,w(t) in

Figure I are called processing nodes Conservation of flow and the

conditions on the ovw imply that a flow x enteing the splitting node

in Figure I generates a flow avw(Z)x along processing arc (v,w(z)) To

be consistent with (2.5) we assume that ordinary network arcs are

represented by a column of AN which contains a I in the row

corresponding to the tail node of the arc and a -1 in the row

corresponding to the head node. In Figure 1, if arc (u.v) corresponds

-7-

to column r of AN and the corresponding processing column (2.5) is

column s of Ap. then it is assumed that the capacities [hNO r and [hp]s

are equal.

In [16], the definition of pure processing networks includes the

structure formed when the direction of the arcs in Figure I is

reversed For problems with finite capacities, by complementing flows

with respect to these capacit ies and adjusting supply values

appropriately, this structure can be reduced to the one shown in

Figure 1. Thus, there is no loss of generality in restricting

attention to the structure of Figure I

In order to exploit the network structure of PPN. it is necessary

to see how this structure carries over to a basis The first

observat ion to be made is that the slack arc column must he present in

anv basis matrix, otherwise the rows of the matrix would sum to zero

Next, we, note that when the processing columns and the slack colun are

removed from a basis matrix containing r processing columns, tie

remaining columns correspond to the arcs in r+l trees This follows by

ti mI pl- (ouxit Iiig argument Thtse r+I trees are cnl led basis trees J

The- basis tree whlih is irII ident to the problem s slack arc. when taken5

together with that art. forms the basis qcuasi-tree For the remaining

r trees, root nodes are chosen atbitrarilv and the resulting 1" rooted

trees are called the rooted basis trees We let a basis matrix B

containing r processing colunuis be part it ioned as

B 1 1 I.BrJ] (27) I

. . 5,.lo,.

%~45

% %2,a

where B I contains network columns and B2 contains the processing -.

columns. .

If the last r rows of B correspond to roots of rooted basis trees,

then

B 1 and B, = (2.8)

T C

results where T and C have m-r rows and D and F have r rows. The

working basis corresponding to basis B is defined to be the matrix

where

Q F DT-C (2.9)

It can be shown that Q is nonsingular, see, e g [5), [15]

The matrix T in (2.8) corresponds to a collection of quasi-trees.

By judicious use of matrices T and Q, updated entering columns and dual

variables for the primal simplex algorithm can be computed without the

need for maintaining a factori-at ion of the ent i re lisis mat I3 If .x1 i

a [] s the entering column and it is partitioned to be

82

compatible with (2.8), then a straightforward calculation shows that

the updated entering column [1 is obtained by solving

QY2= a2 - DT-a 1
(2.10)

Y Ta - T-Cy2 . (2.11)

Similarly, we partition the basic costs cB=Icl.-c2] and the dual

variables wnrrrInr 2 I so that they are compatible with (258). The dual

variables are computed by solving

71,Q - c T C (2.12)

M- n.-DT (213)

Suppose t ltt t-olunui of B.. is thle p roc es s ing coluimn with

splitting nlode v P, is defined to be the set of processing nodes in

rooted basis tree i which correspond to nonzero values ini coluimn j of

82-- The fotllowing theorem was proved in11

Theorem For ti has1 iP . thle elements (1 o 0f the wor-king basis Q

slit -I'fv

q = (2.14)

where the sum in (214 is defined to be zero in case P is empty

I 1 it III litm I illillI (,UI I e ~ idS t U) til tit I t 11 1)) (It ell Jl e>v

In (i uammoln hHas I t r ef. i t fol i ows from (.' 10C) fiand (2' 1 11 that the on lv

flo changes o((ur on t tiv Y(I e i it t he t ree f oi mud by t lie cunt cr3 i g !it

%.-, ~Fullthle rmor e. t lie t heorem irnpl i es t ha t no workIing has i s upriat e i s

required in thiis, case This tYpe, of pivot is termed a pure network

pivat whi til l o thter pivots are t erined processing network pivots

%,

ot.L

77

-10-

3. Primal Simplex Variant .

The fundamental observation in the development of the primal

simplex variant whirh we use rela t es to Figure I The flow on the al-

location arc (u.v) must equal the value of the variable for the

associated processing coluim Thus, if the processing column is to be

the leaving var iablt tht. nio a t t, mr(can leave the basis instead A

Note that the al Iotot Lio ti(must be basic in this situation, since

otherwise the pivo)t woulti Ien-d to the impossible situation in which

both the allocation arc and the processing column are nonbasic.

Before stating the simplex algorithm. we outline the situations

which are to be considered tin updot ing the basis trees and the working

basis Q during the basis exchange step Before the basis exchange is

executed, we assume that Ti is the bafsis quasi-tree and r i=1 .2. .r

are the rooted basis trees. Those basis trees which have been changed

during the exchange step will be designated by means of an asterisk.

If a change to r, i/0, results in a change to one of the sets P in

(2 14), then row i of Q must be updated

Several cases occur ii the basis exchange step of the simplex

algorithm. However, the variant we describe allows us to restrict

attention to the two following cases ? r

(i) The entering column is a processing column and the leaving column

is a network column (arc) If the leaving arc is i1 T I , then row

i of Q will be updated (unless i=0) and an additional row and

column will be adjoined to Q.

%, %

a I II % ' '. *'-% ' " '''' ' '"' .'" ''" --""" ""'% -.-.-.., ,,'' ''-""""''""""''''"", ''3'" """""""" .., '

-11-

(ii) Both the entering and leaving columns are network columns (arcs).

If the entering arc is incident to Tr and T then these two trees

are joined to form T'. If the leaving arc is contained in T k,

then T k splits into two trees upon its removal. One of these

becomes T' and the other becomes T9. If i, j, and k are nonzero I
and dist in t . then three row- of Q will be updated Otherwise.

special cases occur in which at most two rows of Q are updated

Ontt of these spe iail cases i5 the pure networh pivot for which no

updating of rows of Q is necessary.

We remirr, that cases in which a processing column leaves the basis are

not cons idered here. since the a I locat ion arc can be chosen to leave

i ns t cad

The bas i. t rees 'an be v i stiti I ;'ed tas lhng i g downward f rom t lie 1 r

roots The node incident to the slack arc in the basis quasi-tree is

taken o; the root there If two basis trees T and T are joined by an

entering arc the resulting 7 will retain the root of TI while TJ will

hanc below 7 in r' Also. when a leaving arc is deleted from a basis

t F'" ,. ai| Uppe" tr Tki which on.it illS the root of rk and a lower

tree k2 art" formed

A start inig PI'N bas is ran be obtained by first sel t ing the

variables x,, iii (' 1)-(2 4) to upper or lower bounds according to some

heuristic procedure These variables are set nonbasic in the PPN

basis Those Yp variables at upper bounds induce supplies in network N

in addition to those represented by b in (2.2) The resulting network

problem is solved to optimality to give the initial collection of basis

trees which, iii this case, consists of a single quasi-tree Of course.

this quasi-tree may contain artificial arcs with positive flow An

%'UA

% %

-12-

extension of this starting procedure has been implemented as described

in Section 4.

We introduce the vector A to represent certain quantities which

may be thought of as pseudo node potentials.

c T-1 (3 1)

It will be useful to extend A by defining XJ=O for root nodes j of

rooted basis trees. For convenience, this extension will also be

denoted as),

Primal Simplex Algorithm for PPN

0 O)btaiin un initial basis. Set up the initial basis trees and

working basis Compute initial dual variables and basic solution

I. Price nonbasic processing columns and arcs. If an entering proces-

sing column is found, go to Step 3 If an entering arc is found.

check for basic artificial arcs with positive flow. If basic

art ifl lfil s withI positive flow exist. stop with an infeasible prob-

lem, otherwise, stop with an optimal solution

1 If both end nodes of entering arc e are not in a common basis tree

r. go to Step 3 Otherwise, restrict the ratio test and flow

update to the arcs on the cycle formed in T by e Update A on the

tree hanging below e after the leaving arc is removed. Go to

Step 6

%i
'U,_,

?J~j

U

-13-

3. Compute yl and Y2 using (2.10) and (2.11).

4. Perform the ratio test restricted to arcs. Update basic solution

values.

5. Update basis trees and working basis (basis exchange step). If an

arc is entering the basis go to (ii)

W A protessing rolul enters th busis, and the leavinrg arc is

In The leaving ar(is removed to form an upper tree Tkl

aiid 1 lower tree 1 h. Tree Ik beomees r+l' A is updated on

S1r+1 and row r+l of Q Is created using (2.14). Column r+l

of Q corresponding to the entering column is also created

using (, 14) Tree il becomes r and row k of Q is updated

(inless k-0) Go to Step 6

III) An) arc e enters tlit. bt. s (Th. details follow for this

step when e is incident to Ti and T , the leaving arc is in V

T and Ij k are nonzero and dist inct The remaining

cases involve at most two rows of Q and the details are

omitted) First. T hangs below 7i via arc e to form T and

is updated on r Row I of (Q is updated to form Q' Next.

the leaving ar(is removed from 7k to form an upper tree

and a lower tree ii6, The lower tree becomes T and X is

updated on r;. Row j of Q' is updated to form Q*'. Finally.

T k1 becomes T* and row k of Q" is updated to form Q*

6 Update n2 using (2.12). Compute n, using

1 = A - i2DT- 1 (3.2)

where A has been previously updated. Go to Step 1.

IV

*.. / -"" -' "O' 'L'"'...'\'&'.K ".'K. * .'.*.w.. " ''d',''d~ .' ", - .: *-'~' -

14-

In the above algorithm, processing columns are allowed to enter

the basis, but not to leave. However, when the basis is reinverted,

eligible processing columns are removed from the basis via a series of

degenerate pivots. More details on this procedure are given in

Section 4.

Updating of A on a tree which is rehung is done by adding a

certain constant to these A values in the same way as node potentials

are updated in the pure network case.

4. Implementation

A FORTRAN implementation, PROCNET, of the primal simplex algorithm

of Section 3 was created This version of PROCNET extends and enhances

a previous version which is described in [5] Problem data storage in

PROCNET is accomplished by means of arrays for arc costs, capacities,

and head nodes. Also, arrays containing the nonzero values in proces-

sing columns and the positions of these values are used. The costs of

processing columns, components of cp in (2.1), are assumed to be zero,

since such costs can be placed on the allocation arcs instead

The basis trees are incorporated into a single. larger tree

following 110], [11]. This tree is referred to as the master basis

tree and its root is called the master root The roots of all basis

trees are connected to the master root by artificial arcs, and the

slack arc of the basis quasi-tree is disregarded since it plays no role

in the implementation. For maintaining the master basis tree, the

predecessor, depth, thread and reverse thread functions [2], [13]. [15]

are employed.

V. - aX

-15-

Since the updates to Q in Step 5 of the primal simplex algorithm

involve more changes to rows than to columns, we have elected to main-

tain Q by applying column replacement techniques to its transpose QT -_

Three LA05 subroutines were written in FORTRAN by Reid, and they

are described in [23], [24]. These subroutines implement a sparse

variant of the Bartels-Golub algoritlhm I1] In order to utilize these

subroutines for maintaining the working basis for PROCNET, we needed to

extend them by providing t means for adjoining additional rows and

columns. The two subroutines we created for this purpose are described

in this section and we note that they may be useful in situations other

than maintaining a working basis. For example, Marsten's XMP linear

programming code [17] uses the original LA05 subroutines for main-

taining the IY basis. Our additional subroutines can be used to pro-

vide a restart capability for XMP when one or more rows are adjoined to

an LP problem

We proceed with an explanation of the functions of the three

original LA05 subroutines as applied to the rxr matrix Q in PROCNFT

* The LAO5A subroutine produces a factorization

Q L1 (4 1)

The lower triangular factor L is maintained as a sequence of eta

vectors The upper triangular factor 11 is stored as a sparse matrix

with the nonzeros in the rows held in packed form, while only the

positions for nonzeros in columns are kept Additional information

which is maintained includes the pivot order and the number of nonzeros

per row or column.

5i5

: P

The LA05B subroutine solves sets of equations

QTj - 5 (4.2)

and

Q x (4.3) .6

where x and 6o are r-dimensional vectors This solution is carried out 4:',

4 with the use of (4.1).

The third subroutine, LA05C, revises the factorization (4.1) when

one of the columns of QT is changed

In order to accommodat e add I t ional rows and colurmis for QT in

(4.1). we embed this matrix in a larger matrix Q where

1 0 -,

QT = (4.4)

and I is an identity matrix of dimension s. When an additional row d of

(I of lengtl 141 S ietttld . it is vfbcedded in a row of length s+r con-

taining s-I initial zeros as

[0, Od] (4.5)

and the row of (4.5) is inserted as row s of QT in (4.4). Likewise, an

T.
additional column of Q is supplied with s-I initial zeros and inserted

as column s in (4.4).

.9

.

~ ~ ~ S. *'

-17-

A new subroutine LA05SS was created which takes the original fac-

torization of QT from (4.1) as provided by LA05A and adjusts the

information for storing L and U to produce the factorization

T= m (4.6)

where L 0] (4.7)

and [l-] (4 (3)
0 u

Essentially what is done is to change the pointers for rows and columns

of U and to iIs'i t the Iill., t' os (enIs') I or the It-ient Ii v 111it lIx The

rows acted on by the eta vectors of L must also be changed

appropriately.

A new subroutine LA05TT carries out the task of inserting a new

row (4.5) when this is required. We note that changes are needed for

-! the data maintaining U but eta vectors corresponding to L remain

oi rrett F i itsert i ot ()f ii new (()I nn It) , lAW(is us.ed

PROCNET obtains an initial basis for PIN by means of a heuristic

based on [3]. [6] In order to apply the heuristic, the arc data for

each processing arc are generated The resulting pure network with

proportional flow restrictions relaxed is solved first. Next, the flow

values of the relaxed solution on the allocation arcs are used to

creeate a new pure network problem with nonzero lower bounds on the

processing arcs. If the flow value on the allocation arc (u.v) of

Figure I is x, then the lower bound on arc (v,w(z)) is set to

0 7 5 vvw(Z)x This second network problem is solved and the flows on

allocation arcs are saved. If such flows are at the original problem

".-

% %

'I.k

-18- t.

bounds, the corresponding processing columns are made nonbasic while

the allocation arc is basic. If an allocation arc has a flow between

the original problem bounds, a parallel allocation arc is created with

a capacity equal to this flow value. The parallel arc is given the

same cost as the original allocation arc, while the original allocation

arc is replaced bv a modified allocation arc whose capacity equals the

original capacity less the flow value In the initial PPN basis, the

modified allocation arc is nounbasic at zero, the parallel arc is

nonbasic at capacity and the corresponding processing column is basic.

The initial working basis Q is an rxr identity matrix where r is the

ntumber of parallel arcs created The initial flows through allocation

arcs and their parallel arcs induce supply values on the remainder of

the network This remaining network problem is solved to optimality

and the resulting optimal tree becomes the initial PPN basis

quasi-tree l -

We note that an improvement to the way allocation arcs and their

parallel arcs are handled has resulted in about a 10' decrease in the

iunbet of IPN iterat ions over the previous version of PROCNET 15]

This improvement is accomplished by reinstating the original allocation

arc and eliminating the modified allocation arc and its parallel arc 51
once one of the latter arcs enters the basis. In the previous version

of the code both the modified allocation arc and its parallel arc were

maintained for all PPN pivots, and this restricted the amount of flow

change which could be achieved on a single pivot involving these arcs.

-19-

PROCNET uses two conditions to trigger a basis reinversion The

first of these conditions is a total of 40 column and row/column

updates of QT The other condition involves the dimension s of I in

(4.8). After s processing columns have entered the basis, the next

entering processing column causes a basis reinversion during which a

new identity I is created PROCNET currently uses a value of 10 for s

At the time of basis reinversion. PROCNET searches for basic processing

columns having corresponding allocation arcs (see Figure 1) which are

nonbasic. Before this basis reinversion takes place. a series of

degenerate pivots is executed in which such processing columns are made

nonbasic while their allocation arcs become basic

Pricing for PROCNET is handled by means of two candidate lists. LI

and I.2 L.I is used for pure network pivots while processing network

pivots arising from either entering processing columns or arcs are

placed on L2 In order to identify arcs which correspond to pure net-

work pivots, basis trees are numbered A node length array. treenum,

assigns to each node of a given tree the number of that tree If

r t reenmn vailues at end nodezs of a pivot eligible arc aglee, the aru i S

placed on LI Otherwise, it is placed on L PROCNET repeats Step 2

of the primal simplex algorithm for all eligible arcs from L.I before

updat Ifg r2 in Step 6 The length of LI was set at 50 and the length

of L2 was set at 30 After all pivots from LI have been made, up to 15

of the best pivots from L2 are made following the logic of 19].

Pure network pivots are accomplished following the same procedure

used in a pure network algorithm. For processing network pivots, Y2 in

- (2.10) is computed using LAO5B. If i denotes a processing column such

that [y 2]1 1 0, then PROCNET flags basis trees containing process iig

W,

% % N,

.,., -20-

nodes corresponding to column i. In computing y, by means of the

reverse thread in (2.11), only trees which are flagged are traced.

Since processing columns do not leave the basis until a reinversion

occurs, only y, values are used in the ratio test.

All parameter settings for PROCNET mentioned in this section

remained fixed at these values for the testing described in Section 5.

.4

.9 Computational Results N

In tills study, test pir o b l erris wer. solved by MI'SX 170 and PROCNET

Testing was done on the IBM 3081-I) at the University of Texas As

previouslY noted. MPSX'370 is al assemblY language program while

It'IOCNET i. written i n FORTRAN l'R NIl' wits (-ompi led using the FORTV.
.e.

compi ler with optimization level 3. and it maintains all real values

using double precision. The execution times for both codes are

reported in central processor seconds These times do not include

input or output with the exception that one line of output (iteration

log) is produced by MPSX,'370 each iteration This small amount of

(5" 1 h)11 I i i" g I gl)1 e .f f' (t (11 thf. ()N-v i I (Oill)t rl oll ()f Ithe tw .I"
.4..,

codes

The ('RASH and PRIMAL modules of MI'SXr 70 were employed in solving
5'..

the test problems To be (omparahble with PROCNET, the reduced cost

tolerance (XTOLDJ) of MPSX/370 was set to 10-5 It was necessary to

set the feasibility tolerance (XTOLV) to 10 since the default value ..-
.4o

of 10.5 kept MPSX/370 from reaching feasibili ty on the test problems. .,

All other parameters for MPSX/370 were set to default values

I'

S " -" 6 "h " . . "

-21-

Parameters used by PROCNET. in addition to those previously

discussed, are provided next. The reduced cost and feasibility

tolerances were both set to 0- 5 Big-M costs on artificial arcs were

tolernceswereboth et t-10

set to 99999, while pivots with minimum ratio less than 10- 10 were

treated as degenerate In LA05A and LA05C, pivot elements less than

0.I times the largest eIemcnt !n the pivot row were excluded. Default

values were used for other LA05 parameters

The (lass of Al lULct ion)roceSSIng (At') network problems was used

for testing These problems have a dual block angular form where

subproblems corresponding to diagonal blocks are transportation prob--

lem: (ind coupling colums are processing columns This class of test

problems was also used in [4). 151

Problem data. wi th the except)oi of total sipplv, was rnndomlv

generated All constraints were formulated as equalities. As the

problems are generated, a feasible flow is created. The capacity of

each arc with finite capacity is set to a parameter p times the

feasible flow generated for that arc Total supply was set at 10000

fot aill probleizi Two cost ranges, A and B, were used Cost range A

has (ost- , on allocation arcs in the range 100 to 150 and other ar(

(s t S in t he range I t o I(1 Cos t range B has a I Io at con ir((os s ii

li, ringe I to It) wit h other arc- cost s in the range 10(0 to -I

Be(ause a machine dependent (CDC) random number generator was

employed in the previous studies 141, [5], we were not able to include

the problems from those studies here. The test problems solved are

similar to those of [5], however, problems with more processing columns

and problems with variable values are included here

'kk" LUe 1

:2. -Lk

*-22-

Test problem data is given in Table 1. Problems in the groups

1-4, 5-8,..., 25-28, have the same network topology. Also, groups 5-8

and 25-28 differ only in their cost ranges. For problems 4,8_ ... 28,

the value of u was randomly selected from the interval I .1,2.01 for

each arc Computational results for these problems are reported in

Table I AP Problem Data

P- obl em Finiitt- t Rows Col uruis I'oc essing Nonzeros Cost
(atli ttitv Ar' (ml liil;) (noluInnsq') Per Proc Range

Col um

I allocation arcs I I 901 3010 10 16 A

2 al ocat lon arcS (901 3010 10 16 A

3 al locat lon arts 901 3010 10 16 A

I till tit . I 1 () 901 301(0 10 16 A

5 al locat ioll ar(S 1 1 2001 505(50 6 A

; till o(at lol at 0 1 0 0W) 1 505(0 50 6 A
allocation ars - 2001 5050 50 6 A

8 all arcs 1 1-2.0 2001 5050 50 6 A

9 allocation arcs 1.1 1501 4900 100 4 A
10 allocation arcs 2 0 1501 4900 100 4 A
11 al Iocation arcs W 1501 4900 100 4 A

1 all arcs 1 1-2 0 1501 4900 100 4 A

1. (,. It i (11 4 1 .O) rI .4 A

1- aIlloa t Ion ar(s z 0 21 5550 150 4 A

15 al location arcs 22,51 5550 150 .1 A
16 all arcs 1 1-- 0 5251 555 0 150 4 A

17 al locat ion arcs 1 1 1951 5000 200 4 A

10 all o(at Ion ar(s 2 0 1951 5000 200 4 A

19 al locat Ion arts 0 1951 5000 200 4 A
20 all arcs 1 1-2.0 1951 5000 200 4 A

21 a! l o at Ion arc s 1 1 1801 4750 250 4 A

22 allocat ion arcs 2 0 1801 4750 250 4 A

23 allocation arcs 1801 4750 250 4 A

24 all arcs 1 .1-2.0 1801 4750 250 4 A

25 allocation arcs 1 1 2001 5050 50 6 B

26 allocation arcs 2 0 2001 5050 50 6 B

27 allocation arcs 00 2001 5050 50 6 B

28 all arcs 1 1-2.0 2001 5050 50 6 B

% V V V

-23-

Table 2. The count of iterations for both codes begins with the first

pivot after the start (CRASH) procedure. The number of basic proces-

sing columns at opt imalitv is obtained bv PROCNET. This number pro-

vides an estimate of the dimension of the matrix QT near optimality.

Table 2 Computational Results for" AP Problems

-Pr o1 PROCNET PROCNFNT FP1:CNT MI§:. 370 MPSX/370 MPSX/370 Basic Pro(

- Start TO t a I I ter at Iolz CRASI Total Iterations Colunis at
T I mt. TlIm,- Time. Time Opt imal i ty

1 2.2 5 4 29- 72 61.2 2107 10
1 8 15 0 1251 7 2 128 4 3225 10
1 1 4 18 8 153, T 8 116 4 2755 10

4 2 3 21 3 :2004 6 6 205 8 5722 10

5 5 5 23 2 604 21 0 557 4 8063 24
3 9 1 3 15 I 2 .1 928 8 12144 47

7 5 48 2 1531 -1 (765 0 9929 50
h 4 4 59 9 2038 13 2 1234.8 16827 47

9 3 4 9 4 306 16 8 103 2 2727 77
10 2 9 21 8 1041 16.8 151 2 3341 77

11 2 24 3 1179 16 8 141 6 3008 99
. I .1 32 1 1800 11 .4 114 6 6230 98

13 48 14 7 324 24 6 166 8 3322 150 Am
- .1! 4 I l ,Y }(,) .19t .4 104-: I ')e)lI.

1" 3 6 32 3 98.1 26 4 211 33501 150

16 5 6 43 1 1706 17 4 297 6 5658 150

" 96 371 816 24 0 608 4 8760 71

S10 6 4 59 1 124fl 2'll .4 786 6 10953 18

Ip4 5) 68 (0 1 565 2 4 656 4 8850 196

2. 8 3 83 7 18,29 13 2 1239 0 16885 187,

,, 2! 9 6 37 3 818 24 6 457 8 8078 71

2.: 6 1 71 :3 156;-, 25 8 735 0 11054 212
23 4 8 92 0 2110 29.4 645.0 9163 238
24 9.2 120 8 2606 14 4 1240.8 17794 227

25 5.3 20.9 550 21 0 561.0 8480 15

26 2 8 78.4 2636 21 0 798 0 10229 40
27 2 5 101.0 3562 20 4 715.8 9231 48
28 3.8 93.3 3498 13.8 1057.8 14097 46

TOTAL 130.1 1302 0 41380 516 6 14925 0 225829

4'.,

:.'.. ,'.

-24-

The ratio of total solution time for MPSX/370 to that of PROCNET is

11.46 Average time per iteration for MPXS/370 is 0.0638 sec/iteration

while for PROCNET it is 0 0283 sec/iteration The ratio of these

average times per iteration is about 2 25 The larger ratio for total

solution time can be attributed to the superiority of the PROCNET start

procedure and pivot strategy over that of MPSX'370 on the problems

tested

The efficacy of the PROCNET start procedure and pivot strategy is

strongly dependent on p as shown in Table 3. The ratio of total

MPSX/370 solution time to that of PROCNET decreases from 17.00 for

p=l.l down to 8.45 for p=-. These results show that PROCNET is

especially effective on tightly capacitated problems. Average pivot

times for the processing network code are remarkably stable as ,.

varies. Apparently, the tendency to a smaller number of basic ,

processing columns at optimality when p=ll is offset by a smaller

percentage of pure network pivots. On the other hand, it seems that

the larger percentage of pure network pivots for PROCNET on problems

4,8.28 results in a somewhat smaller average pivot time

Table 3. Performance Values vs p

Problems p PROCNET % PROCNET MPSX/370 MPSX/370 to PROCNET
Pure Net- Avg.Pivot Avg.Pivot Avg.Pivot Ttl.Time

work Pivots Time Time Time Ratio Ratio

1,5,....25 1.1 17.3 0.0290 0.0572 1.97 17.00
2,....26 2.0 20.3 0,0295 0.0662 2.24 11.95
3,7...,27 - 21.3 0.0290 0.0671 2.31 6.45
4,8,....28 1.1-2.0 28.6 0.0269 0.0637 2.37 11.57

oI,

-25-

In Table 4, variation in code performance with the number of pro-
'S

cessing columns p is given. Except for p=5 0 , average pivot times for

PROCNET increase with p while the percentage of pure network pivots is

roughly decreasing. More nonzeros per processing column is perhaps the

major factor which makes the problems with p=50 difficult for MPSX/370.

We note that for problems 5-8, the MPSX/370 to PROCNET total time ratio

is 20.7 The problems with p=100 and p=l5O are easier than problems

with larger p values for both codes although MPSX/370 to PROCNET total

time ratios are down A possible explanation is that the

transportation subproblems have a somewhat different structure Thuis

consists of fewer origins, more destinations and more arcs per origin

than those with larger p values Also, when p equals 100. the number

of problem rows is lower From the results of Table 4. we conclude

that PROCNET remains very efficient for problems with up to 250 proces-

sing columns.

Table 4. Performance Values vs Number of Processing Columns

Iroblems l'ot ess PROCNET PROCNET MPSX/370 MPSX,. 370 to I'ROCNET
Columns Pure Net- Avg Pivot Avg.Pivot Avg Pivot Tt! Time

(p) work Pivots Time Time Time Ratio Ratio

1 4 1() 42 5 0 0105 0 0350 3 33 8 38
5 -8.2..¢ - 28 f5O 21 6 0 0278 0 0727 2 62 14 3:2

9-12 100 36 3 0 0172 0 0293 1 70 5 83
13-16 150 31 1 0 0263 0 0507 1.93 7 51
17-20 200 10 2 0 0401 0 0706 1.76 13 27-
21-24 250 12) 0 0411 0 0648 1 58 9 58

'5%4

% % VU

Mm%......

-26-

6. Conclusion.

The new version of our pure processing network code, PROCNET,

derives part of its efficiency from a working basis of variable

dimension. An extension of the LA05 subroutines has been described,

and this extension is used in PROCNET to maintain the working basis.

PROCNET substantially outperforms MPSX/370 in both time per pivot and

total solution time on problems with up to 250 processing columns. The

faster time per pivot of PROCNET indicates that it will be useful as

part of a mathematical programing system while the faster overall

solution t ime shows that it can be used to advantage in stand alone

fashion 5since PROCNET is an all-FORTRAN code, it is highly portable

aREFERENCES

Z

1. R. Bartels and G. Golub, "The Simplex Method of Linear Programming
Using LU Pecomposition", Communications o[1he ACM. Vol 12,

pp. 266-268, 1969.

2. G. Bradley, G. Brown and G. Graves, "Design and Implementation of

lairgi'e iu " '(1 l ' P ituusI 'Irwsu sluii pinzt A lgorithmis''". u'nu'u -i
-2 Vol k,4, pp 1-34, 1977

3 A Charnes. W. Cooper, 1 Divine, W. Hinkel, J Koning and
V Lovegren, "A Sea-shore hot at i on Goal Programming Model for Nay\'
lise." Research Report CCS 429, Center for Cybernetic Studles, The
University of Texas, Austin. 1982

4 C -l Chen and M. Engquist, "Computational Comparison of Two
Solution Procedures for Allocation/Processing Networks."

NeMc.a. _ Pliggrmnuing Study, Vol 26, pp. 218-220, 1986

5 C -H. Chen and M Engquist, "A Primal Simplex Approach to Pure
Processing Networks," to appear in Management S

6. F. Glover, R. Glover and F. Martinson, "A Netform System for
Resource Planning in the U.S. Bureau of Land Management," Journal

% of Jh& Operational Research Society, Vol. 35, pp. 605-616, 1984.

"'6

_N ,2,

-27-

7. F. Glover, D. Karney and D. Klingman, "Implementation and
Computational Comparisons of Primal, Dual, and Primal-Dual Computer
Codes for Minimum Cost Network Flow Problems," Networks, Vol. 4,

pp. 191-212, 1974.

8. F. Glover, D. Karney, D. Klingman and A. Napier, "A Computational
Study on Start Procedures, Basis Change Criteria, and Solution

Algorithms for Transportation Problems," Man gIent Science,
Vol. 20, pp. 793-813, 1974.

9. F. Glover and D. Klingman. "Capsule View of Future Developments of

Large-scale Network and Network-related Problems," Research Report
CCS 238, Center for Cybernetic Studies, The University of Texas,
Austin, 1975

10 F. Glover and D Klingman, "The Simplex SON Algorithm for
LP/Embedded Network Problems," Mathematical Programing SLudv,
Vol. 15, pp. 148-176, 1981.

11. F Glover and D. Klingman, "Basis Change Characterizations for the

Simplex SON Algorithm for LP/Embedded Networks," Mathematical

Prograiming Study, Vol. 24, pp. 141-157, 1985

12. F. Glover, D. Klingman, N. Phillips and G. Ross, "Integrating
Modeling. Algorithm Design, and Computational Implementation to
Solve a Large-Scale Nonlinear Mixed Integer Programming Problem,"

Annals 1 Oerations Research, Vol. 5, pp. 395-411, 1985/6.

13. F. Glover, D. Klingman and J. Stutz, "Augmented Threaded Index
Method for Network Optimization," INFO, Vol. 12. pp. 293-298,

1974.

14, IBM Mathematical Programming Syvstem Extended/370 (MPSX/370) Program
!Ref 'rencv' M1 u1ifi il 41 h E d t t ion. I tt ernat lonti I Hltis i I ss Mh(h i les
Corporation Technical Publications Department. White Plains, New

York, 1979.

15 J Kennington and R Helgnson. Aigg-r-AinI for Network EPrnramig,
John Wiley and Sons. New York, 1980

16. J. Koene, "Minimal Cost Flow in Processing Networks, a Primal
Approach," Ph D Thesis. Eindhoven University of Technology,

Eindhoven, The Netherlands, 1982

17 R. Marsten, "The Design of the XMP Linear Programming Library," ACM
Transactions pn Mathematical Software, Vol. 7. pp. 481-497, 1981.

18. R. McBride, "Solving Embedded Generalized Network Problems,"

Europen Journal o Operation. Research, Vol. 21, pp. 82-92, 1985.

19. J. Mulvey, "Pivot Strategies for Primal-Simplex Network Codes,"

_the AO, Vol. 25, pp. 266-270, 1978.

L%

9--

-28-

20. B. Murtagh, Advanced Linear Prrawmming:. Computation And4 Prcie
McGraw-Hill, New York, 1981.

6NN
21. B. Murtagh and M. Saunders, "Large Scale Linearly Constrained

Optimization," Mathematical Prograzming, Vol. 14. pp. 41-72, 1978.

22. W. Orchard-Hays, Advanlced Lier Prgraimming Coiuitiig Technguesi
McGraw-Hill, New York, 1968.

23. J. Reid, "FORTRAN Subroutines for Handling Sparse Linear
Programming Bases," Report AERE-R8269. Computer Science and Systems
Division, AERE Harwell, Oxfordshire, England, 1976.

24. J. Reid, "A Sparsity-exploiting Variant of the Bartels-Golub
Decomposition for Linear Programming Bases." Mathegmatical
Programming. Vol 24, pp 55-69. 1982

25. J. Tomlin and J. Welch, "Integration of a Primal Simplex Network
Algorithm with a Large-Scale Mathematical Programming System,"AU

Transactions Qfl Mathematical Software, Vol. 11, pp. 1-11. 1985.

%4

%'

MAW.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE flyhon Date Xflrod)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMETATON PGEDEFORE COMPLETING FORM

REPORT NUMBER 3.GV CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TirL E(ondSuboto)S. TYPE OF REPORT A PERIOD COVERED

AN IMPROVED PRIMAL SIMPLEX VARIANT FOR PURE Technical
PROCESSING NETWORKS_______________

9. PERFORMING ORO. REPORT NUMBER
CCS 552

I. AUTHOR~~6. CO---0NTRACT OR GRANT NUMBER(*)

M.iChang, North Dakota State University N00014-82-K-0295
C. Chen, Gonzaga University N00014-86-C-0398
M. Engquist

9 PERFI DMIN.; G1I~iANIZ2ATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

Center for Cybernetic Studies, UT Austin
Austin, Texas 78712

II CONTROLLING orFIr NAME AND ADDRESS 12 REPORT DATE

Office of Naval Research (Code 434) October 1986

Washington, D.C. 13 NUMBER OF rA(ES

30
14 MONITORING AaENCY NAME! A At)ORESS(II dlfforon from ConI,.'IIinj Office) IS SECURITY CLASS. (n of t rpnt)

Unclassified

'TSi -_ _ __~-1T OAON
SCHEDULE

16 DISTRIBiUTION STATEMENT (of 11,1. Ropors)

This document has been approved for public release and sale; its
distribution is unlimited.

17 DI1TRIRUTION STATEMENT tof th. ah*Au,fl or in 01-hk 20, It dlffmI f1-.R~~I

IS SUPPLEMENTARY NOTES

I1 KEY WORDS (Cosnsi,, on trree .fdo If noc...ury mid folontify by btacd nireber)

Networks, Processing networks, Linear programming, Mathematical programming
systems

20. AUsTRACT fCeahlnu. on revoroo .1.1. of aodoooory and fd..,I0f. by bid@& .. ~e
In processing networks, ordinary network constraints are supplemented
by proportional flow restrictions on arcs entering or leaving some

nodes. This paper describes a new primal partitioning algorithm forI

solving pure processing networks using a working basis of variable
dimension. In testing against MPSX/370 on a class of randomly
generated problems, a FORTRAN implementation of this algorithm was found
to be an order of magnitude faster. Besides indicating the use of our

00 1 POR'VS 1473 £ovirioN OF I Nov 6% IS **SOLzTz Unclassified
'1/" 0102-014. 6401 I

SECURITY CLASSIFICATION OF THIS PAGEf (0,m, Dols Ent..ed)

Unclassifieid
bkA.UsTV CLASSIFICATION OF THIS PA09(UOm Date ReW00

methods in stand alone fashion, the computational results also
demonstrate the desirability of using these methods as a high-
level module in a mathematical programming system.

Unclasifie

46IVCASFCTO FTHSPG(RN01 MV4

11
I'.-

